A 32-nucleotide exon-splicing enhancer regulates usage of competing 5' splice sites in a differential internal exon.

نویسندگان

  • M B Humphrey
  • J Bryan
  • T A Cooper
  • S M Berget
چکیده

Large alternatively spliced internal exons are uncommon in vertebrate genes, and the mechanisms governing their usage are unknown. In this report, we examined alternative splicing of a 1-kb internal exon from the human caldesmon gene containing two regulated 5' splice sites that are 687 nucleotides apart. In cell lines normally splicing caldesmon RNA via utilization of the exon-internal 5' splice site, inclusion of the differential exon required a long purine-rich sequence located between the two competing 5' splice sites. This element consisted of four identical 32-nucleotide purine-rich repeats that resemble exon-splicing enhancers (ESE) identified in other genes. One 32-nucleotide repeat supported exon inclusion, repressed usage of the terminal 5' splice site, and functioned in a heterologous exon dependent on exon enhancers for inclusion, indicating that the caldesmon purine-rich sequence can be classified as an ESE. The ESE was required for utilization of the internal 5' splice site only in the presence of the competing 5' splice site and had no effect when placed downstream of the terminal 5' splice site. In the absence of the internal 5' splice site, the ESE activated a normally silent cryptic 5' splice site near the natural internal 5' splice site, indicating that the ESE stimulates upstream 5' splice site selection. We propose that the caldesmon ESE functions to regulate competition between two 5' splice sites within a differential internal exon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MORAN FOUNDATION PROJECT (1-94-0074) A cell-free assay for regulated pre-mRNA alternative splicing The aims of this proposal are to establish a cell free complementation assay for positive-acting factors that regulate alternative splicing during striated muscle

1. Lee, A.B. and Cooper. T.A. (1995) An improved direct PCR screen of bacterial colonies: wooden toothpicks inhibit PCR amplification. BioTechniques 18, 225226. 2. Ramchatesingh, J., Zahler, A.M., Neugebauer, K.M., Roth, M.B. and Cooper, T.A. (1995) A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer (submitted) 3....

متن کامل

A short sequence within two purine-rich enhancers determines 5' splice site specificity.

Purine-rich enhancers are exon sequences that promote inclusion of alternative exons, usually via activation of weak upstream 3' splice sites. A recently described purine-rich enhancer from the caldesmon gene has an additional activity by which it directs selection of competing 5' splice sites within an alternative exon. In this study, we have compared the caldesmon enhancer with another purine...

متن کامل

A 5' splice site-proximal enhancer binds SF1 and activates exon bridging of a microexon.

Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite ...

متن کامل

Multisite and bidirectional exonic splicing enhancer in CD44 alternative exon v3.

The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containin...

متن کامل

Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia

Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 1995